Lightweight and rust-proof: Leaf springs made of composites – ahead


Thanks to the design of the preform, you can reinforce the GFRP springs in the precise areas where there are high levels of force. As a result, the springs require up to 75 percent less space than the steel variants overall. This is mainly of interest with respect to electromobility, in which there should be as much storage space for batteries as possible. Here, we see great growth potential for all lightweight construction technologies. 


KraussMaffei has coordinated a large number of partners for the leaf spring project. How does it work, and how does someone come up with the idea to do something like this?


We wanted to show HRC, a customer of ours, what is possible. Collaboration with all participants is going very smoothly. KraussMaffei took on the project management function, which allowed each specialist to focus on their own area, such as the design of the component (Engenuity), production of the matrix (Huntsman), fiber roving (Johns Manville), the preforms (Schmidt & Heinzmann) or the mold (Alpex) and post-mold processing (Hufschmied). In keeping with the idea of “one face to the customer,” HRC had just one contact. We would like to sincerely thank our partners for the effective, professional collaboration we have had with them.

for more information…